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Abstract 

A spontaneously broken symmetry is shown not to be restored a3 

witnessed by accelerating (Rindler) observers. To one-loop thermal 

contribution3 appear only in differences between Minkowski and Rindler 

vacuum matrix elements. All observers obtain (up to coordinate 

transformations) the same matrix elements of physical operators. 

Identical effective potentials and order parameters are obtained by all 

observers. 

3 Operated by Universities Research Association Inc. under contract with the United States Department of Energy 



-2- FERMILAB-Pub-85/28-T 

Suppose a symmetry is spontaneously broken as defined by the vacuum 

state in Minkowski space. It is well known that the effects of thermal 

equilibrium can restore a broken symmetry (1) . Typically, there exists a 

critical temperature, Tc, at which the effective thermal potential as a 

function of order parameter PC develops an absolute minimum at T,=O, 

the system undergoes a second order phase transition, and 4), relaxes to 

this minimum at higher temperature3 (the order of the phase transition 

is irrelevant presently, but we study T4 for which the above statements 

are true in 3+1 dimensions). 

Furthermore, it is well known that accelerating observers in a 

Lorentz invariant groundstate witness a thermal energy-momentum 

distribution of particle3 of temperature g/2lT, where g parameterizes a 

Rindler ensemble of accelerating observers. (2) The question then 

naturally arises, “if g > 211Tc, will the accelerating observer witness 

a restoration of the broken SyItImetry?” Furthermore, will a stationary 

observer (Schwarzschild) around a black-hole of sufficiently small ma3S 

witness symmetry restoration? 

Simple heuristic arguments suggests that the an3wer must be no. In 

the groundstate we have the order parameter, qc9,= (a\ +‘\o> which is a 

scalar and must transform into itself in the Rindler coordinate system. 

Furthermore, if Tc correspond3 to a second order phase transition 

temperature, then the infinite correlation length measured, e.g., 

transversely to the direction of acceleration, must become finite for T 

> Tc. However the general coordinate transformation relating the 

accelerating observer3 (defined by Fiindler coordinates) to the 

stationary observer is nonsingular (except at the horizon and within a 

half-infinite range of the Minkowski coordinate system) and cannot, 



-3- FERMILAB-Pub-85/28-T 

therefore, convert a finite proper length scale in one frame into an 

infinite one in another. Thus, g=2rTc cannot correspond to a second 

order phase transition. 

These arguments raise paradoxes however. For example, if an 

accelerating observer truly observe3 radiation of temperature TH, then 

he must find thermal corrections to operator matrix elements, e.g. 9 2 

must display a thermal correction of TH '/12 which conflict3 with the 

covariance requirement that all observers must agree that it have the 

Same value. The energy density, which for a spontaneously broken theory 

is essentially the effective potential, must be the Same for all 

observers up to covariant transformation factors. How then does the 

accelerating observer obtain the usual thermal corrections to this 

quantity which would normally lead to symmetry restoration? 

We have resolved these paradoxes and find the results somewhat 

surprising. We shall presently state the result3 of our one-loop 

analysis, the full technical detail3 to be presented elsewherec3). We 

have made use of a functional Schroedinger formalism of the Hawking 

effect given previously (4) and which graphically reproduce3 the usual 

results of Fulling, Unruh and other3(295*6). The analysis requires a 3+1 

massive solution which ha3 only been discussed previously in ref.(Q) and 

in ref.(6). The actual analysis was somewhat tedious, involving 

momentum integration3 with respect to order of modified Bessel 

function3(7) (these are Kontorovich-Lebedev transform3(8)). 

The Hawking effect arises because of the ambiguity in the choice Of 

the evolution surfaces of the theory, i.e. the ambiguity of the choice 

of Hamiltonian. Consider the d+l dimensional Rindler space as defined 

by the coordinate transformations: (9) 
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x1 c o 
0-J 

C-L) 
These define the L and R Rindler wedges. 

The evolution of the wave-functional in Minkowski space can be 

given on a family of surfaces labelled by coordinate time x0 and we thus 

have the Schroedinger equation: 

t-iMY(~,KO) = I f-oy&$) (2) 

Thus HM admits a groundstate, which we take to be the true 

physical groundstate of the world. All observers, accelerating or not, 

make measurement3 in WM. 

However, the natural evolution for a Rindler observer occurs along 

surface3 labelled by the coordinate time ‘2. We may construct a 

Hamiltonian which explicitly generate3 this evolution (4) and obtain the 

Schroedinger equation: 
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H,%J, ‘r) = ; G w’p, $g (3) 

HR propagates any state on the surfaces labelled by '?(. The groundstate 

of HR is a wave-functional -YJ R, which is inequivalent to Y M, yet is 

the natural definition of the groundstate as defined by the accelerating 

observers. We see 
that at "=?= 

0 the states are defined on a common 

hypersurface and may be compared. Relative to --vR the state %I 

appears to be excited and the particle number operator in Rindler 

momentum is that of a Bose gas of temperature T H = g/2rr(z). The density 

matrix as seen by an observer on the R wedge is thermal upon integrating 

over the degrees of freedom on the L wedge. c5) Explicit representations 

of H R' HM, YR, 2t), are given in ref.(Q) and the thermal energy 

distribution may be read off immediately when TM is expressed in terms 

of the Rindler mode coefficients. 

In thermal equilibrium we typically wish to compute the expectation 

of an operator, @, with the density matrix and subtract its expectation 

at T=O, i.e. compute: 
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-G-c gTl - 46’\0> s 
where ,pT is the thermal density matrix. What is the analogous 

computation in the present case? Clearly, from the point of view of the 

accelerating observer we wish to compute the difference: 

<yJw-PJ - W(pWR~ 

since 9, is the thermally excited state in which the observer exists 

and yR 1s the (fictitious) relative groundstate of zero temperature. 

Indeed, we find that such differences as in eq.(5) do lead to the uSUa1 

thermal results. The analogous problem in the massless case is implicit 

in the analysis of ref.(lO). 

Consider for example the expectation value of 9’ as computed in an 

unbroken theory in -4J M (we compute a point-split quantity to regularize 

the infinities and we take, for technical reasons, the point-Split in 

the direction of acceleration; this was found to be a convenient method 

of regularizing the longitudinal momentum integrals Over the order of 

modified Bessel functions which occur in the solution of the Rindler 

wave-functional): 
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= cp; 4 & Ic,Ct^‘~ 

This is the usual Feynman propagator for spacelike separation c. We 

have explicitly checked that this result obtains both in the Minkowski 

mode representation of AJ M and in the Rindler mode representation of 

xl* This constitutes an explicit verification of the general 

covariance of the functional Schroedinger formalism (4) . Here 
r 

is the 

mass parameter associated with the state as discussed above eq.(lO) 

below. 

We may carry out the same evaluation in the inequivalent Rindler 

groundstate, Y R, to obtain: 

IF 

S dw -- A’ G II 
-rr'tw' x, 

+ dui 4 K,& xt ,J,t co&~) 

0 

We note the appearance of the third term on the rhs in which the limit 

E --> 0 has been taken. This term arises in the Kontorovich-Lebedev 

transform of the form ~~xP((~-t’)x)Kix(d)Kix(P)dX which occurs in 
0 

the difference of the expressions in Minkowski and Rindler spate(3). 

This term always enters such expressions with a minUS sign. The 

singular part of eq.(7) is identical to that of eq.(6) as it must be; we 

are in no way tampering with the short-distance part of the theory and 

thermal effects are purely infra-red. We now consider the difference of 

these results as in eq.(5). We take the c--> 0 and, corresponding to a 
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high temperature approximation, x1--> 0, making use of the small 

argument limit of the Kv(z) functions: 

~%wd lVmY - <*R\cptK>l I*,,, 
rro 

+ A; I 

CL 1 
+ La?)& + coshru~ - Cl 48 rrzz: 

IS) 
D 

Noting that the proper acceleration of a Rindler observer at 

x=g-'exp(gk) is just gexp(-g$ )=l/\x\=g(x), we see that we must, in 

configuration space, adopt a local definition of the Hawking 

temperature, TH=g(x)/2r (this is well known; we have made use here of 

the analysis by Candelas and Deutsch(") in which such a result is 

implicit. This does not conflict with the momentum space result which 

may be considered an average on the manifold). Thus, we see that: 

(%I s’cd q@J - cvp=wlJR, + -$tx ,\ 
I2 

(71 

which is precisely the correct result for a scalar field in thermal 

equilibrium at high temperature TH. Thus the accelerating observer 

witnesses the correct thermal contribution to the difference in eq.(q), 

but it occurs not because the Minkowski vacuum expectation value iS 

enhanced by an amount T2/12, but rather because the Rindler groundstate 

expectation value is depressed by an amount -T2/12. In actual fact, the 

accelerating observer measures <q2> to be that given in eq.(6) which is 

interpreted as the thermally corrected value; the thermal terms have 

added to and cancelled the third term of eq.(7) and the general 
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invariance of Cp 2 is maintained. 

Similar results follow for the energy density which we take to be 

T 00’ It is well known that in the massless case the expectation value Of 

this quantity in the Rindler groundstate receives a negative correction 

of the form -aT4 and similar results are known for black-holes in the 

Schwarzschild groundstate (10,9) . To address the issue of symmetry 

restoration we must go beyond these massless field analyses. 

In an unstable q4 theory we may choose a gaussian wavefunctional 

centered about 4), which has a mass parameter 
r 

minimizing the 

expectation value of the energy density. This may be obtained by a 

variational calculation. For an unbroken theory we have +‘cp,=o and p=m, 

the Hamiltonian mass of the scalar field. If the theory is broken with 

the potential -m2@/2 + 1q4/4! we have q,#o and p2 iS the CUrVatUre 

of the Potential at Tc. We thus find for and the expectation value 

for a point splitC3) Too: 

<qg~J+w} = -$I~$-+ 4, be! - &2pw$ 

p =. -02 + +xw; 

The r-“i=K2( pL ) is quartically divergent in fZ.--> 0. Upon appropriate 

cosmological constant, mass and coupling constant renormalization we are 

left with the usual effective potential to O(h). 

We have computed the corresponding quantity in the Rindler 

Hamiltonian groundstate. Here there occurs an overall factor of 

exp(2gr ) which at t=?=O corresponds to the covariant tranSfOrmatiOn Of 

T o. from Rindler to Minkowski coordinates. The singular term of eq.(lO) 
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appears and again we find finite additional negative terms involving K, 

and K 2 functions which are somewhat too lengthy to reproduce here. In 

the limit x1--> 0 we obtain the leading terms in the effective high 

temperature expansion in the form: 

.&p-\qw> - e2%bv(.$ --Ll~R~ 

-+ J&J + & r-’ T;2kl 

These are the usual high temperature contributions. We emphasize that 

the numerical value of the Stefan-Boltzmann constant depends upon the 

choice of stress-tensor and is the usual resu1 t , +/30, for 

vtnew-improved” stress-tensors only. We have studied the USLEd 

unimproved stress-tensor since interactions and mass-terms already break 

conformal invariance (i.e. we neglect conformal coupling to gravity in 

deriving T p ). For the unimproved case we obtain a=llT?/240 (the 

new-improved stress-tensor is COnfOrmally invariant and more closely 

resembles a radiation stress-tensor through its tracelessness (‘O)). 

In true thermal equilibrium the second term on the rhs of eq.(ll) 

is normally responsible for symmetry restoration at high temperature 

with p2 given by eq.(lO). However, again the thermal corrections arise 

because the Rindler expectation value is depressed by the negative of 

the rhs of eq.(ll). In actual fact, the accelerating observer measures 

the zero-temperature effective potential as obtained in eq.(lO) in 

Minkowski space with its minimum at 9,. Thus, the true physical minimum 

is always that of the broken symmetry as measured by all observers, and 

the invariance of the order parameter T, merely corroborates this fact. 
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Other corollaries follow immediately. For example, if the 

Minkowski vacuum is supersymmetric we expect the SuperSymmetry to remain 

intact for all observers, but perhaps be broken by the negative 

pseudo-thermal terms in the Rindler groundstate. Quark-deconfinement is 

also not expected to be witnessed by accelerating observers. The use of 

naive quark fragmentation ideas to treat the UHE black-hole SpeCtrm 

thus becomes suspect. The present analysis casts doubt upon the naive 

interpretations of Hawking temperature effects in inflationary 

cosmologies as well. 

Do these arguments apply to real evaporating black-holes? Here we 

must contend with the issue of non-zero curvature. If, for example, the 

scalar fields are conformally coupled to gravity then we may expect that 

the $ R@?’ term might lead to a restoration of a broken symmetry, but 

such would be common to Kruskal and to Schwarzschild observers alike and 

is not related to the Hawking effect. Insofar as the black-hole metric 

may be treated as static, the above arguments suggest that no 

restoration of symmetry can occur. But energy conservation dictates 

that the metric must relax, i.e. become time dependent as the radiation 

leaks across a surface boundary. The time dependence of the metric 

during evaporation is a further correction to the effective potential 

and we have no insight into its consequences. Thus, we believe that the 

restoration of symmetry for real black-holes, should it Occur at all, 

would appear as a geometry effect and not in any sense a Hawking-thermal 

effect. 
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